An Inequality for Permanents of (0,1)-Matrices*

نویسندگان

  • HENRYK MINC
  • H. J. Ryser
چکیده

Let A be an n-square (0, 1)-matrix, let ri denote the i-th row sum of A, i = 1 ..... n, and let per(A) denote the permanent of A. Then per(A) ~< H ri q~/-2,.1 I + V T where equality can occur if and only if there exist permutation matrices P and Q such that PAQ is a direct sum of l-square and 2-square matrices all of whose entries are 1. I f A = (ai~) is an n-square mat r ix then the permanent o f A is defined by pe r (A) = ~ f i aio(i). (1) a e S n i=1 A n upto -da te survey o f the theory o f pe rmanen t s was given in [2]. M a n y proper t ies o f the p e r m a n e n t func t ion are s imilar to those of the de terminant . In par t icu la r , there is the fo l lowing ana log o f Lap lace expans ion by the k th c o l u m n pe r (A) = ~ aik per(A(i[k)), (2) * This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 432-63.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Extensions of the Alon-Tarsi Latin Square Conjecture

Expressions involving the product of the permanent with the (n − 1)st power of the determinant of a matrix of indeterminates, and of (0,1)-matrices, are shown to be related to an extension to odd dimensions of the Alon-Tarsi Latin Square Conjecture, first stated by Zappa. These yield an alternative proof of a theorem of Drisko, stating that the extended conjecture holds for Latin squares of odd...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all

Let p be a homogeneous polynomial of degree n in n variables, p(z1, . . . , zn) = p(Z), Z ∈ C. We call such a polynomial p H-Stable if p(z1, . . . , zn) 6= 0 provided the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely related to the notion of Hyperbolicity used intensively in the PDE theory. The main theorem in this paper states that if p(x1, . . . , xn) is a homog...

متن کامل

Permanents of Hessenberg (0,1)-matrices revisited

∗Received by the editors January 7, 2008. Accepted for publication on January 13, 2010. Handling Editor: Shmuel Friedland. †Department of Mathematics & Statistics, California State Polytechnic University, Pomona, Pomona, California 91768, USA ([email protected]). ‡Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071, USA ([email protected]). Electronic Journal of Linea...

متن کامل

Pfaffians, Hafnians and Products of Real Linear Functionals

We prove pfaffian and hafnian versions of Lieb’s inequalities on determinants and permanents of positive semi-definite matrices. We use the hafnian inequality to improve the lower bound of Révész and Sarantopoulos on the norm of a product of linear functionals on a real Euclidean space (this subject is sometimes called the ‘real linear polarization constant’ problem). -

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006